Approximate dynamic programming based control of hyperbolic PDE systems using reduced-order models from method of characteristics

نویسندگان

  • Sudhakar Munusamy
  • Sridharakumar Narasimhan
  • Niket S. Kaisare
چکیده

Approximate dynamic programming (ADP) is a model based control technique suitable for nonlinear systems. Application of ADP to distributed parameter systems (DPS) which are described by partial differential equations is a computationally intensive task. This problem is addressed in literature by the use of reduced order models which capture the essential dynamics of the system. Order reduction of DPS described by hyperbolic PDEs is a difficult task as such systems exhibit modes of nearly equal energy. The focus of this contribution is ADP based control of systems described by hyperbolic PDEs using reduced order models. Method of characteristics (MOC) is used to obtain reduced order models. This reduced order model is then used in ADP based control for solving the set-point tracking problem. Two case studies involving single and double characteristics are studied. Open loop simulations demonstrate the effectiveness of MOC in reducing the order and the closed loop simulations with ADP based controller indicate the advantage of using these reduced order models. © 2013 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elimination of Hard-Nonlinearities Destructive Effects in Control Systems Using Approximate Techniques

Many of the physical phenomena, like friction, backlash, drag, and etc., which appear in mechanical systems are inherently nonlinear and have destructive effects on the control systems behavior. Generally, they are modeled by hard nonlinearities. In this paper, two different methods are proposed to cope with the effects of hard nonlinearities which exist in friction various models. Simple inver...

متن کامل

OPTIMIZATION OF A PRODUCTION LOT SIZING PROBLEM WITH QUANTITY DISCOUNT

Dynamic lot sizing problem is one of the significant problem in industrial units and it has been considered by  many researchers. Considering the quantity discount in  purchasing cost is one of the important and practical assumptions in the field of inventory control models and it has been less focused in terms of stochastic version of dynamic lot sizing problem. In  this paper, stochastic dyn...

متن کامل

Friction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique

Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in control systems which happen frequently. The proposed approach works for n...

متن کامل

Measuring a Dynamic Efficiency Based on MONLP Model under DEA Control

Data envelopment analysis (DEA) is a common technique in measuring the relative efficiency of a set of decision making units (DMUs) with multiple inputs and multiple outputs. ‎‎Standard DEA models are ‎‎quite limited models‎, ‎in the sense that they do not consider a DMU ‎‎at different times‎. ‎To resolve this problem‎, ‎DEA models with dynamic ‎‎structures have been proposed‎.‎In a recent pape...

متن کامل

ADAPTIVE BACKSTEPPING CONTROL OF UNCERTAIN FRACTIONAL ORDER SYSTEMS BY FUZZY APPROXIMATION APPROACH

In this paper, a novel problem of observer-based adaptive fuzzy fractional control for fractional order dynamic systems with commensurate orders is investigated; the control scheme is constructed by using the backstepping and adaptive technique. Dynamic surface control method is used to avoid the problem of “explosion of complexity” which is caused by backstepping design process. Fuzzy logic sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Chemical Engineering

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013